- completely bounded set
- вполне ограниченное множество
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Capacity of a set — In mathematics, the capacity of a set in Euclidean space is a measure of that set s size . Unlike, say, Lebesgue measure, which measures a set s volume or physical extent, capacity is a mathematical analogue of a set s ability to hold electrical… … Wikipedia
Julia set — In complex dynamics, the Julia set J(f), [Note that in other areas of mathematics the notation J(f), can also represent the Jacobian matrix of a real valued mapping f, between smooth manifolds.] of a holomorphic function f, informally consists of … Wikipedia
Glossary of topology — This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also… … Wikipedia
India — /in dee euh/, n. 1. Hindi, Bharat. a republic in S Asia: a union comprising 25 states and 7 union territories; formerly a British colony; gained independence Aug. 15, 1947; became a republic within the Commonwealth of Nations Jan. 26, 1950.… … Universalium
Compact operator — In functional analysis, a branch of mathematics, a compact operator is a linear operator L from a Banach space X to another Banach space Y, such that the image under L of any bounded subset of X is a relatively compact subset of Y. Such an… … Wikipedia
Metric space — In mathematics, a metric space is a set where a notion of distance (called a metric) between elements of the set is defined. The metric space which most closely corresponds to our intuitive understanding of space is the 3 dimensional Euclidean… … Wikipedia
Distribution (mathematics) — This article is about generalized functions in mathematical analysis. For the probability meaning, see Probability distribution. For other uses, see Distribution (disambiguation). In mathematical analysis, distributions (or generalized functions) … Wikipedia
Kakutani fixed point theorem — In mathematical analysis, the Kakutani fixed point theorem is a fixed point theorem for set valued functions. It provides sufficient conditions for a set valued function defined on a convex, compact subset of a Euclidean space to have a fixed… … Wikipedia
Naimark's dilation theorem — In operator theory, Naimark s dilation theorem is a result that characterizes positive operator valued measures. It can be viewed as a consequence of Stinespring s dilation theorem. Contents 1 Note 2 Some preliminary notions 3 Naimark s theorem … Wikipedia
John von Neumann — Von Neumann redirects here. For other uses, see Von Neumann (disambiguation). The native form of this personal name is Neumann János. This article uses the Western name order. John von Neumann … Wikipedia
Logic and the philosophy of mathematics in the nineteenth century — John Stillwell INTRODUCTION In its history of over two thousand years, mathematics has seldom been disturbed by philosophical disputes. Ever since Plato, who is said to have put the slogan ‘Let no one who is not a geometer enter here’ over the… … History of philosophy